HST/ACS Coronagraphic Imaging of Debris Disks John Krist¹, David Ardila², Mark Clampin³, David Golimowski², Holland Ford², and Garth Illingworth⁴ (Email: krist@stsci.edu) ¹Space Telescope Science Institute, Baltimore, Maryland ²Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland ³NASA Goddard Space Flight Center, Greenbelt, Maryland ⁴UCO/Lick Observatory, University of California, Santa Cruz, California The Hubble Space Telescope Advanced Camera for Surveys (ACS) Science Team is conducting a circumstellar disks survey that has recently imaged the debris disks around AU Microscopium and β Pictoris with the ACS coronagraph. AU Mic is the latest-type star (M0) known to have a debris disk, which was recently imaged from the ground. It is one of only two M stars with an IRAS excess and is a member of the β Pic moving group. The edge-on disk appears, at first glance, similar to that of β Pictoris, though it lacks as large asymmetries. Our observations indicate that the interior ~ 15 AU of the disk is largely clear of dust, in agreement with predictions based on infrared measurements. Like β Pic, the disk has zonal power-law variations in its radial surface brightness profile. We have also obtained multicolor images of β Pictoris with the coronagraph. These provide the first reliable visible-light color information for the disk and also show the disk at higher latitudes than any previous HST observations.